12 research outputs found

    Design for safety: theoretical framework of the safety aspect of BIM system to determine the safety index

    Get PDF
    Despite the safety improvement drive that has been implemented in the construction industry in Singapore for many years, the industry continues to report the highest number of workplace fatalities, compared to other industries. The purpose of this paper is to discuss the theoretical framework of the safety aspect of a proposed BIM System to determine a Safety Index. An online questionnaire survey was conducted to ascertain the current workplace safety and health situation in the construction industry and explore how BIM can be used to improve safety performance in the industry. A safety hazard library was developed based on the main contributors to fatal accidents in the construction industry, determined from the formal records and existing literature, and a series of discussions with representatives from the Workplace Safety and Health Institute (WSH Institute) in Singapore. The results from the survey suggested that the majority of the firms have implemented the necessary policies, programmes and procedures on Workplace Safety and Health (WSH) practices. However, BIM is still not widely applied or explored beyond the mandatory requirement that building plans should be submitted to the authorities for approval in BIM format. This paper presents a discussion of the safety aspect of the Intelligent Productivity and Safety System (IPASS) developed in the study. IPASS is an intelligent system incorporating the buildable design concept, theory on the detection, prevention and control of hazards, and the Construction Safety Audit Scoring System (ConSASS). The system is based on the premise that safety should be considered at the design stage, and BIM can be an effective tool to facilitate the efforts to enhance safety performance. IPASS allows users to analyse and monitor key aspects of the safety performance of the project before the project starts and as the project progresses

    Scalable on-chip network in power constrained manycore processors

    No full text
    While much research has been done using 2D mesh network as a baseline on-chip network topology, recent multi-core chips from vendors leverage a ring topology. In this work, we re-visit the topology comparison in on-chip networks and model the impact of on-chip network on overall performance while holding the entire chip power constant. We vary the amount of power allocated to the on-chip network and evaluate its impact on overall performance to determine a balanced system design. We show how the ring topology is efficient in current technology at 45nm but the scalability is limited as technology continues to scale and show how a simple hierarchical ring approach can provide a scalable solution.1

    Design and Analysis of Hybrid Flow Control for Hierarchical Ring Network-on-Chip

    No full text
    A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybridflow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring-while still supporting virtual channels to avoid protocol deadlock. We describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. We also provide alternative designs for the credit network and PQS architectures. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21 percent compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51 percent.11sciescopu

    Transportation-network-inspired network-on-chip

    No full text
    A cost-efficient network-on-chip is needed in a scalable many-core systems. Recent multicore processors have leveraged a ring topology and hierarchical ring can increase scalability but presents different challenges, including higher hop count and global ring bottleneck. In this work, we describe a hierarchical ring topology that we refer to as a transportation-network-inspired network-on-chip (tNoC) that leverages principles from transportation network systems. In particular, we propose a novel hybrid flow control for hierarchical ring topology to scale the topology efficiently. The flow control is hybrid in that the channels are allocated on flit granularity while the buffers are allocated on packet granularity. The hybrid flow control enables a simplified router microarchitecture (to minimize per-hop latency) as router input buffers are minimized and buffers are pushed to the edges, either at the output ports or at the hub routers that interconnect the local rings to the global ring - while still supporting virtual channels to avoid protocol deadlock. We also describe a packet-quota-system (PQS) and a separate credit network that provide congestion management, support prioritized arbitration in the network, and provide support for multiflit packets. A detailed evaluation of a 64-core CMP shows that the tNoC improves performance by up to 21% compared with a baseline, buffered hierarchical ring topology while reducing NoC energy by 51%.1

    Corporate philanthropy, attitude towards corporations, and purchase intentions: A South Korea study

    No full text
    This study proposes a model integrating attributions about perceived motives of corporation philanthropy (CP), attitude towards the corporations conducting CP, and subsequent purchasing intention. The model is tested in South Korea where the culture and business environment are different from that in North America. Data are collected from two different stakeholder groups of South Koreans (127 managers and 229 consumers: total sample of 356). The results based on the total sample indicate that only when corporations are perceived as conducting CP for public-serving (altruistic) motives, the CP significantly influences attitude towards the corporations. When the sample is divided into the two different stakeholder groups, non-identical patterns of relationships between motives and attitudes are observed. Managers show favorable relationships between motives and attitude, while consumers become skeptical for the reactive motive. The functional relationships between motives and attitude proposed in the model are partially supported with the South Korean data.Corporate philanthropy Motives Stakeholders Attitudes Korea

    In-Orbit Results and Attitude Analysis of the SNUGLITE Cube-Satellite

    No full text
    SNUGLITE (Seoul National University Global navigation satellite system Laboratory satellITE) is a two-unit cube satellite (CubeSat) with dimensions 10 × 10 × 23 cm that requires an attitude system for missions and ground station telecommunication. A linear-quadratic-Gaussian-based optimal attitude system for the CubeSat platform has been developed using low-cost sensors, with the in-orbit verification of the attitude system being is one of main study objectives. Since launch, the SNUGLITE CubeSat has continuously broadcast in-orbit status information. In this study, a methodology for the analysis of in-orbit attitude estimation results using received data is presented, and this was achieved by comparing two sun-pointing vectors, i.e., the sun-pointing vector calculated using estimated attitude with the positions of the sun and the satellite and the reference vector generated by the power levels of the solar panels. Because the satellite position was required for the attitude analysis, the verification of the performance of the own-developed on-board Global Positioning System (GPS) receiver is also briefly described. Analyses indicate that the attitude estimation of the SNUGLITE CubeSat has achieved an in-orbit real-time pointing accuracy with a root mean square of 6.1°
    corecore